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Abstract 

Diagnostic score reports linking assessment outcomes to instructional interventions are one of 

the most requested features of assessment products. There is a body of interesting work done in 

the last 20 years including Tatsuoka’s rule space method (Tatsuoka, 1983), Haertal and Wiley’s 

binary skills model (Haertal, 1984; Haertal & Wiley, 1993), and Mislevy, Almond, Yan, and 

Steinberg’s Bayesian inference network (Mislevy, Almond, Yan, & Steinberg, 1999). Recent 

research has resulted in major breakthroughs for the use of a parametric IRT model for 

performing skills diagnoses. Hartz, Roussos, and Stout (2002) have developed an identifiable 

and flexible model called the fusion model. 

This paper compares the fusion model and the Bayesian inference network in the design 

and analysis of an assessment, including the Q-matrix, and then compares other related models, 

including rule space, item response theory (IRT), and general multivariate latent class models. 

The paper also attempts to characterize the kinds of problems for which each type of 

measurement model is well-suited. A general Bayesian psychometric framework provides 

common language, making it easier to appreciate the differences. 

In addition, this paper explores some of the strengths and weaknesses of each approach 

based on a comparative analysis of a cognitive assessment, the mixed number subtraction data 

set. In this case, both the fusion model and Bayesian network approaches yield similar 

performance characteristics and also seem to pick up on different characteristics. 

 

Key words: Cognitive diagnosis, fusion model, binary skills model, latent class models, Bayesian 

network, Markov chain Monte Carlo (MCMC) 
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Introduction 

One of the most interesting and requested features in educational assessment is cognitive 

diagnostic score reports. Instead of assigning a single ability estimate to each examinee as in 

typical item response theory (IRT) model-based summative assessments, cognitive diagnosis 

model-based formative assessments partition the latent space multidimensionality into more fine-

grained, often discrete or dichotomous cognitive skills or latent attributes, and evaluate the 

examinee with respect to his/her level of competence for each attribute. Another purpose of 

model-based cognitive diagnosis is to evaluate the items in terms of their effectiveness in 

measuring the intended constructs and identify the accuracy with which the attributes are being 

measured; this information can be used in improving test construction. The results of the 

cognitive structure of the test may also be useful to inform the standard setting process for the 

examination. 

Tatsuoka’s rule space method (Tatsuoka, 1983) represents one approach to generating 

diagnostic scores, characterized by first identifying a vector of attributes α—knowledge, skills, 

and abilities being tested—and then defining an incidence matrix Q, which shows which 

attributes are used in which items. Naturally, learners do not behave exactly according to the 

theory defined in the Q-matrix; many different models have been proposed to account for this 

uncertainty. The fusion model (Hartz, Roussos, & Stout, 2002) provides one approach that 

combines a noisy-and model (Pearl, 1988; Junker & Sijtsma, 2001) for attribute application with 

a Rasch-type IRT error model for unmodeled skills. Thus in limiting cases, the fusion model 

should behave like a pure IRT model or a noisy-and Bayesian network. Both models implicitly 

define multidimensional latent classes, so there is obviously a connection between these models 

as well. 

This paper compares the Bayesian estimation results using the fusion model and Bayesian 

network model-fit to a real assessment of mixed number subtractions created by Tatsuoka (1983, 

1990) based on cognitive analyses of students’ problem solutions. The initial modeling of the 

Tatsuoka data in terms of cognitive diagnosis with a Bayesian inference network is from Mislevy 

(1995), and the results were reported in Mislevy, Almond, Yan, and Steinberg (1999). A fuller 

discussion of the design and analysis using a binary-skills Bayesian network for this assessment 

(Yan, Mislevy, & Almond, 2003) includes cognitive analysis and statistical modeling with 

Bayesian estimations using Markov chain Monte Carlo (MCMC). This research focuses on the 
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comparisons of the fusion model results with the results from the binary-skills Bayesian network 

in a general Bayesian psychometric framework. 

Most of the early applications of the fusion model were meant to add diagnostic reporting to 

assessments that were designed as unidimensional selection or placement tests. At some of the early 

presentations of these applications, both the authors and the audience agreed that the fusion model 

should perform better in an assessment that was designed for diagnosis from the start. However, 

designing an assessment for diagnosis requires a different approach to assessment design. 

Evidence-centered Design 

Sam Messick (1992) described a construct-oriented philosophy of assessment design: 

 

A construct-centered approach would begin by asking what complex of knowledge, 

skills, or other attribute should be assessed....[proficiency model] Next, what behaviors or 

performances should reveal those constructs, and what tasks or situations should elicit 

those behaviors? [evidence model] Thus, the nature of the construct guides the selection 

or construction of relevant tasks as well as the rational development of construct-based 

scoring criteria and rubrics. [task model] (p. 17) 

 

Mislevy, Steinberg, and Almond (2003) developed an approach to construct-oriented 

design using four models: The proficiency model describes the knowledge, skills, and abilities 

being assessed; the evidence models describes how to update our beliefs about a student’s 

proficiency based on the observed outcomes from that student’s work;, the task models describes 

how to structure the assessment situation to obtain the kinds of observations we need to make;, 

and finally, the assembly model describes the collection of tasks that will comprise the 

assessment. Mislevy et al. call this approach evidence-centered design (ECD) because of the 

central role of evidentiary reasoning in the design process. Figure 1 is a schematic representation 

of the four models in the conceptual assessment framework (CAF) for ECD. 
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Figure 1. Conceptual assessment framework (CAF). 

The CAF is quite general and can be used to describe assessments developed with a 

number of different methodologies. Mislevy (1995) suggested using Bayesian networks (Pearl, 

1988) as the psychometric machinery to implement the CAF, so most of our work to date 

involves applications using Bayesian networks (Mislevy, Almond et al., 1999; Yan, Mislevy, & 

Almond et al., 2003; Sinharay, Almond, & Yan, 2003). The fusion model (Hartz, et al., 2002) 

also fits into this framework. Furthermore, both models can accommodate proficiency models 

consisting of multiple binary skills, making them both attractive candidates for diagnostic 

assessments. 

This paper explores some of the strengths and weaknesses of each approach based on a 

comparative analysis of a single data set: a short assessment designed to assess the mixed 

number subtraction skills of middle school students first analyzed by Tatsuoka (1983). This 

should serve as a starting point for exploring the space of possible models suitable for diagnostic 

assessment. 

An Example From Mixed Number Subtraction 

The example discussed in this paper is drawn from the research of Tatsuoka and her 

colleagues. Their work began with cognitive analyses of middle-school students’ solutions of 

mixed-number subtraction problems. Klein, Birenbaum, Standiford, and Tatsuoka (1981) 

identified two methods that students used to solve problems in this domain: 
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Method A: Convert mixed numbers to improper fractions, subtract, and then reduce if 

necessary. 

Method B: Separate mixed numbers into whole number and fractional parts, subtract as 

two subproblems, borrowing one from the whole number minuend if necessary, and then 

simplify and reduce if necessary. 

The cognitive analysis mapped out flowcharts for applying each method to items from a 

universe of fraction subtraction problems. A number of key procedures appear, which any given 

problem may or may not require depending on the features of the problem and the method by 

which a student might attempt to solve it. Students had trouble solving a problem using Method 

B, for example, when they could not carry out one or more of the procedures that an item 

required. Tatsuoka (1983) constructed a test to determine which method a student used to solve 

problems in the domain1 and which procedures they appeared to be having trouble with. 

For our analysis, we use the data consisting of the responses of 325 students who 

Tatsuoka identified as using Method B. We simplified the analysis by considering only the 15 

items in which it is not necessary to find a common denominator. Table 1 lists those items, 

grouped in terms of which of the following procedures is required for solution under Method B:  

• Skill 1:  Basic fraction subtraction. 

• Skill 2:  Simplify/reduce fraction or mixed number. 

• Skill 3:  Separate whole number from fraction. 

• Skill 4:  Borrow one from the whole number in a given mixed number. 

• Skill 5:  Convert a whole number to a fraction. 

Q-matrix 

Tatsuoka (1983) developed an approach to construct-oriented design called rule space. The 

rule space approach starts with identifying a number of attributes that represent the knowledge, 

skills, and abilities we wish to assess. (These form the proficiency model.) Next, each item is 

coded according to which attributes are necessary to solve the problem posed. These codings are 

put into the Q-matrix, an incidence matrix in which rows represent items and columns represent 

attributes. A cell in the matrix, Qjk, takes the value 1 if mastery of Skill k is required to solve Item j 

and 0 if they are not. The rows of the Q-matrix correspond to evidence models in the CAF, while 

the matrix as a whole provides some of the function of the assembly model. 
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Table 1 contains the original Q-matrix for this example. For the 15 items in this 

assessment, the matrix of skill requirements for each of the items forms the Q-matrix. For 

example, Items 2 and 4 require Skill 1 only; Items 1, 7, 12, 13, and 15 require Skills 1, 3, and 4 

together. 

Table 1 

Original Q–matrix Skill Requirements for Fraction Items 

  Skills required  
Item Text 1 2 3 4 5 EM 
  2 6

7 − 4
7 =  x     1 

  4 3
4 − 3

4 =  x     1 
  8 11

8 − 1
8 =  x x    2 

  9 3 4
5 − 3 2

5 =  x  x   3 
11 4 5

7 −1 4
7 =  x  x   3 

  5 3 7
8 − 2 =  x  x   3 

  1 3 1
2 − 2 3

2 =  x  x x  4 
  7 4 1

3 − 2 4
3 =  x  x x  4 

12 7 3
5 − 4

5 =  x  x x  4 
15 4 1

3 − 1 5
3 =  x  x x  4 

13 4 1
10 − 2 8

10 =  x  x x  4 
10 2 − 1

3 =  x  x x x 5 
  3 3 − 2 1

5 =  x  x x x 5 
14 7 − 1 4

3 =  x  x x x 5 
  6 4 4

12 − 2 7
12 =  x x x x  6 

        

 

Among these 15 items, we only see six unique patterns of skills required for the 

assessment. Following the conceptual assessment framework, we call these rows evidence 

models. Note that the analysis of Klein et al. (1981) called this a conjunctive model: In order to 

solve a problem (e.g., Item 1) of a given type (e.g., Evidence Model 4), all of the listed skills 

(Skill 1, Skill 3, and Skill 4 for Evidence Model 4) are required. The conjunctive skill model is a 

purely logical one that predicts whether a student with a particular pattern of skills will be able to 

answer problems from a given evidence model without making guesses or mistakes. 
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The rule space method of Tatsuoka (1983) never builds an explicit model for deviations 

from the logical model. Rule space uses a pattern matching approach that containing an implicit 

model for the deviations, which we will not explore here. Instead, we will explore two 

approaches that take the Q-matrix and build explicit probability models for the deviations: one 

based on Bayesian networks and one based on the fusion model. 

Bayesian Psychometric Framework 

To try and place the two different approaches within a larger context, we press into 

service a general form of the psychometric models for the CAF first introduced by Almond and 

Mislevy (1999). We start by defining some observable quantities: 

i–student 

j–task 

T(i)–set of tasks “attempted” by student i 

Yij–outcome (scored response) of ith student on jth task 

Next, we define the proficiency model. The most important part of the proficiency model 

development is identifying the variables that represent the knowledge, skills, and abilities we 

wish to use in reporting. To make the model fully general (and to better illustrate the difference 

between the fusion model and Bayesian networks), we divide the variables into discrete 

variables, α , and continuous variables, . These variables are purely latent. They are 

sometimes referred to as person parameters in the literature, but as the Bayesian framework 

makes no distinction between unobserved parameters and variables, we prefer to use the term 

“variable” to emphasize that they are person-specific. We reserve the term “parameter” to refer 

to quantities that do not change across persons. The proficiency model is essentially the joint 

distribution of the proficiency variables in the population of interest. That is, 

i iθ

iα —discrete proficiency variables (latent) 

iθ —continuous proficiency variables (latent) 

( , | )i iP α θ λ —proficiency model: population distribution for proficiency variables 
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λ —population parameters for proficiency model 

( )P λ —prior law for population parameters 

The evidence models link the proficiency variables to the observable outcomes. Note that 

for different rows of the Q-matrix, different patterns of skills are required. Thus the functional 

form of the evidence model will vary from item to item. We group all the items that have a 

common pattern of dependence on the proficiency variables and call that pattern an evidence 

model. The mixed number subtraction model uses six different evidence models. While the 

functional form of the distribution of the outcome variables is the same for all items within an 

evidence model, the values of the individual parameters may not be. 

S(j)–evidence model index (unique rows of Q-matrix) 

( ) ( | , , )s j ij i i jP Y α θ π –evidence model; distribution of outcomes given proficiency 

variables 

jπ –item-specific evidence model parameters 

( )j jP π –prior distribution of evidence model parameters 

We can now assemble a general form of a predictive model for the observable 

outcomes: 

( )
( ),

( ) ( | , , ) ( ) ( , | ) (
i i i

ij s j ij i i j j j i i i
j T i

P P Y dP dP
λ α θ π<

= )dP∏∫ ∫ ∫Y α θ π π α θ λ λ   

As the model includes prior distributions for all parameters, this is a full Bayesian model. 

This has a number of important implications. First, the “scoring” process consists of applying 

Bayes’ theorem to calculate the posterior distribution of the proficiency variables given the 

observed outcomes. Second, even if the integrals shown above cannot be calculated analytically, 

we can use MCMC to sample from posterior distributions for both proficiency variables and 

parameters. Both the Bayesian network and the fusion model approach use this technique to 

calibrate their models. 
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Figure 2. Psychometric model for the conceptual assessment framework. 

Figure 2 shows the psychometric framework as a picture using the graphical model 

notation with “plates” to represent repetitions (Buntine, 1994). We notice here that proficiency 

variables, α  and , are replicated over persons, and the evidence model parameters, i iθ jπ , are 

specific to the item. Outcomes, Yij, are replicated over both items and students, while there is 

only one set of the proficiency model parameters, . λ

The following sections compare in detail the Bayesian network and fusion model in terms 

of the proficiency model and evidence model. 

Proficiency Model: Bayesian Network 

The Mislevy (1995) model for the mixed number subtraction problem follows exactly 

this framework laid out above. It starts with five proficiency variables, { 1iα ,…, 5iα }, 

corresponding to the five skills identified in Q–matrix in Table 1. Each of these is an indicator 

variable that takes on the value 1 if the participant has mastered the skill and the value 0 

otherwise. The prior (population) distribution  is expressed as a discrete Bayesian 

network or graphical model (Pearl, 1988). The Bayesian network uses a graph to specify the 

factorization of the joint probability distribution over the skills. Note that the Bayesian network 

entails certain conditional probability conditions that we can exploit when developing the Gibbs 

sampler

( | )iP α λ

2 for this model. Figure 3 shows the dependence relationships among the skill parameters 

provided by the expert analysis (mostly correlations, but Skill 1 is usually acquired before any of 

the others so all of the remaining skills are given conditional distributions). It corresponds to the 

factorization: 

3 4 1 2 5 5 1 2 2 1( ) ( | ) ( | ) ( | , , ) ( | , ) ( | ) ( )WN WN WNP P P P P P P 1α α α α α α α α α α α α α α=α . 
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Prior analyses revealed that Skill 3 is a prerequisite to Skill 4. A three-level auxiliary 

variable WNα  (whole number skill) incorporates this constraint. Level 0 of WNα  represents the 

participants who have mastered neither skill; Level 1 represents participants who have mastered 

Skill 3 but not Skill 4; Level 2 represents participants who mastered both skills. The relationships 

between WNα , 3α , and 4α are logical rather than probabilistic; but the relationships can be 

represented in probability tables with 1s and 0s. 

 

α1

α2

α3 α4

α5

αwn

 
 

Figure 3. The graphical representation of the student model for mixed number subtraction. 

The parameters of the graphical model are defined as follows: λ

1 1( 1P )λ α= =  

2, 2 1( 1 |m P )mλ α α= = =  for m  = 0, 1 

5, 5 1 2( 1 |m P )mλ α α α= = + =   for m = 0, 1, 2 

, , 1 2 5( |WN m n wnP n )mλ α α α α= = + + =   for m = 0, 1, 2, 3  

Finally, we require prior distributions, . We assume that ( )P λ 1λ , 2λ , 5λ , and WNλ  are a 

priori independent. (They will be a posteriori dependent because the θ  variables are latent. 

However, the MCMC analysis will take that dependence into account.) 

The natural conjugate priors for the components of are either Beta or Dirichletλ 3 

distributions. In all cases we chose the hyperparameters so that they sum to 27 (relatively strong 

numbers in comparison with the sample size of 325). With such a complex latent structure, 

strong priors such as the ones here are necessary to prevent problems with identifiability. These 
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must be supported by relatively expensive elicitation from the experts. Here we have given 

numbers that correspond to 87% for acquiring a skill when the previous skills are mastered and 

13% for acquiring the same skill when the previous skills are not mastered. They are given in the 

following list: 

1 (23.5,3.5)Betaλ ∼  

2,0 (3.5, 23.5)Betaλ ∼  

2,1 (23.5,3.5)Betaλ ∼  

5,0 (3.5,23.5)Betaλ ∼  

5,1 (13.5,13.5)Betaλ ∼  

5,2 (23.5,3.5)Betaλ ∼  

,0,* (15,7,5)WN Dirichletλ ∼  

,1,* (11,9,7)WN Dirichletλ ∼  

,2,* (7,9,11)WN Dirichletλ ∼  

,3,* (5,7,15)WN Dirichletλ ∼  

where , ,*WN mλ  represents the vector of values, , ,1 , ,,...,WN m WN m nλ λ . 

Proficiency Model: Fusion Model 

The proficiency model takes the five discrete proficiency variables representing the skills 

and adds a continuous variable, iθ , representing “other required skills not modeled in the Q-

matrix.” To avoid working with distributions that contain a mixture of discrete and continuous 

variables, the fusion model uses the discrete proficiency variables α  in terms of continuous i
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proficiency variables  through a Thurstonian approach of using mastery/nonmastery cut points. 

For Skill k, we define a cut point, .  Then we have 

iα�

kκ

)θα�

1
1,...

0
ik k

ik
ik k

k K
κ
κ

α
α

α
>

= = <

�
�     

The cut points are assigned a unit normal prior distribution, (0,1)k Nκ ∼ . 

We assume that the now continuous proficiency variables have a joint normal 

distribution, that is, ( . To make the model identifiable, we wish to scale this 

distribution to have a variance of 1 for each component; however, we wish to let the correlation 

vary arbitrarily. In the fusion model, this is achieved by defining the diagonal elements of 

, ) (0,i i N Σ∼

Σ to be 

one and the off diagonal elements to be kmρ ∼ Unif (a, b), where 0 < a < b 1≤ . The latter restriction 

prevents problems with collinearity. 

We can see an immediate difference between the Bayesian network and fusion model 

approaches: The Bayesian network approach uses strong prior opinion about the structure of the 

proficiency variables while the fusion model attempts to be much more noninformative, using 

strong priors only where necessary to keep the model away from potential problems. This latter 

situation may present some problems. In particular, the prior distribution for  is quite artificial, 

and it is difficult to understand exactly what the region of space looks like to which it restricts 

Σ

Σ . 

An approach based on the Wishart distribution and the inverse of the covariance matrix (natural 

conjugates) should at least be explored. The Bayesian network model, in contrast, uses natural 

conjugate priors that have a natural interpretation in terms of artificial data. 

Reparameterizing the fusion model to use the inverse of the covariance matrix has 

another interesting consequence. The inverse of the covariance matrix can be expressed as a 

graphical model similar to the Bayesian network (Whittaker, 1990); zeros in the inverse 

covariance matrix express conditional independence constraints on the distribution. Thus, the 

same kind of expert opinion used to build the Bayesian network proficiency model could be used 

to build the fusion model. 

The informative priors of the Bayesian networks do not come without a price. Generally 

speaking, it takes an extensive cognitive analysis to understand the nature of the domain and the 

collaboration between domain experts and psychometricians to build the proficiency model. This 
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is expensive. However, the most significant part of that expense is identifying the proficiency 

variables, an expense that is shared by the fusion model. 

Noisy-and Models 

In the CAF, evidence models are predictive models for the outcome variables given (a 

subset of) the proficiency variables. However, if we attempt to directly assess these probability 

distributions for models that draw on multiple proficiency variables, we will quickly run into a 

combinatorial explosion in the number of parameters we wish to assess. If the outcome variable 

and all of the proficiency variables have two levels, then we need to assess 2k probabilities, 

where k is the number of proficiency variables tapped for evidence mode s(j).  

To reduce the number of parameters, many authors have looked at a class of models 

know as noisy-or models (Pearl, 1988; Díez, 1993; Srinivas, 1993). The noisy-or type models 

have readily interpretable parameters. They also separate the influences of the parent variables 

allowing for factorizations of the probability distributions that can be exploited for efficient 

computation. (This separable influences property is sometimes called causal independence. We 

prefer the former term, which avoids using the word “causal” in a technical sense since that word 

can be dissonant with its lay meaning.) 

Because the models given to us by the experts are compensatory, we will build up the 

noisy-and model rather than the noisy-or since the development is similar (Junker & Sijtsma, 

2001). Look at a task that requires mastery of two skills for correct performance. If “Skill 1 is 

mastered” and “Skill 2 is mastered,” then “Response is correct” is true; otherwise it is false. In 

the engineering world, this is called an and-gate, an operator that is true if and only if all of its 

inputs are true. This is expressed in the logic diagram in Figure 4. 

 

Skill1

Skill2

Correct Response

 
 

Figure 4. Compensatory (and-gate) model. 

12 



Let s(j)i  δ be an indicator function that is 1 if Participant I has mastered the skills required 

for Item j (Evidence Model s(j) ). Then 

( )

( )

1 1
( 1 | , )

0 0
s j

ij i j
s j

if
P Y

if
δ
δ

=
= =  =

α π   

This deterministic model is not a very realistic one in educational testing. A participant 

who has not mastered one of the required skills may be able to guess the solution to a problem or 

solve it via a different mechanism than the one modeled, giving a false-positive result. A 

participant who has mastered all of the required skills may still fail to apply them correctly or 

may make a careless error, giving a false-negative result. By providing “false-positive,” −π , and 

“true-positive,” +π , probabilities, we can make a much more realistic model at the cost of only 

two additional parameters.  

( )

( )

1
( 1 | , )

0
j s j

ij i j
j s j

if
P Y

if
π δ
π δ

+

−

=
= =  =

α π   

Figure 5 expresses this with a probabilistic inversion gate. Junker and Sijtsma (2001) call 

this model DINA (deterministic input noisy and). 

 

Skill1

Skill2

Correct Response

Probability of inverting
output:  False-Positive
(guessing)  and False-

Negative (flubbing)
probabilities  

 

Figure 5. Compensatory model with probabilitistic inversion of the outputs. 

The classic approach to building a noisy-logic model is to look at inversions of the inputs. 

To solve the example problem, the participant must either have mastered Skill 1 or find a way to 

work around that lack of mastery. We call the probability of finding that workaround r1. If S(j) 

represents the set of skills required for Evidence Model s(j), then we can express the distribution 

for the outcome variable as: 
( )

(1 )( 1 | , ) k

s j

ij i j jk
k

P Y r α−= = ∏α π   
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Figure 6 shows this model. Junker and Sijtsma (2001) call this model NIDA (noisy input 

deterministic and). Note that each of the inputs is a combination of two factors. A person can 

solve the problem if the person has Skill 1 OR can find a workaround for Skill 1 AND the person 

has Skill 2 OR can find a workaround for Skill 2. 
 

Skill1

Skill2

Correct Responser1

r2

Parameters indicating the
chances of solving the task
without having mastered the

indicated skill, that is an
exception.  

Figure 6. Noisy-and model with probabilistic inversion of inputs. 

We can put the two different types of “noise” together to make a full noisy- and model 

(Figure 7). Note that with the skill suppression parameters, jkr , the false-negative parameter 

become unidentifiable (it becomes a scale factor for the jkr ’s), so we set it equal to 1. The final 

probability model is then: 
( )

(1 )( 1 | , ) k

s j

ij i j j jk
k

P Y r απ −
+= = ∏α π   

 
Skill1

Skill2

Correct Response

Probability of inverting
output:  False-Positive

(guessing)  probabilities

r1

r2

Parameters indicating the
chances of solving the task
without having mastered the

indicated skill, that is an
exception.  

Figure 7. Full noisy-and model with inversion of both inputs and outputs. 
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Evidence Model: Bayesian Network 

Mislevy et al. (1999) originally used the DINA model with output but not input 

inversions for the evidence models for the mixed number subtraction example. Yan et al. (2003) 

noted that this model caused some underfit. In particular, participants who had not mastered Skill 

1 did not perform as well as predicted by the model.  

To compensate, Sinharay et al. (2003) suggest “softening” the compensatory model by 

separating those who had mastered no skills from those who had mastered some, but not all, of 

the required skills for a particular item. However, in the Q-matrix for this assessment, the first 

column (corresponding to Skill 1) is a constant vector of 1s. This means that it is impossible to 

distinguish, on the basis of this test, which other skills a participant may or may not have 

mastered if they have not mastered Skill 1. (This is probably not a problem operationally as the 

prescription for the diagnosis “Lacks Skill 1” would almost certainly be “Review basic fraction 

arithmetic operations” no matter what other skills the participant may have mastered.) 

Furthermore, Skill 1 was considered a prerequisite to all of the others. As a consequence, the 

new evidence model divided the participants up into three latent classes (for each type of item): 

“Lacks Skill 1” (always required), “Mastered Skill 1 but lacks at least one other required skill,” 

and “Mastered all required skills.” (Yan et al., 2003, used a model with only two latent classes 

per item type: “Mastered the required skills” and “Lacked the required skills.”) The three latent 

class (3LC) model has the following evidence model: 

 

2 ( )

1 ( ) 1

0 1

1
( 1 | , ) 0 0

0

j s j

ij i j j s j

j

if
P Y if and

if

π δ
π δ α
π α

 =
= = =
 =

α π ≠   

Finally, we must assign prior distributions for the jπ . Note that students who have yet to 

master Skill 1 are probably struggling with the very basics of fraction subtraction, and it makes 

sense that they would be less readily able to solve any problem. Consequently, we use a prior 

distribution for 0jπ , a Beta (3.5,23.5), with a lower mean than the one we use for 1jπ , a Beta 

(6,21). The prior for true positives, 2jπ , were a Beta (23.5,3.5). Note that Items 2 and 4 only 

require Skill 1. Therefore, we set 0jπ = 1jπ for those items. 
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Evidence Model: Fusion Model 

Both the fusion model and the noisy-and model are based on the idea that all skills for an 

item are used conjunctively. Therefore, making a few substitutions in the formula for the noisy-

and model produces the fusion model. In the fusion model, the true-positive probability, πj+, 

depends on the continuous proficiency variable, θi. In particular, jπ + = . This 

introduces two new parameters, 

* Logit( )j i ic−π θ

*
jπ , which serve as “difficulty” parameters, and ci,, called the 

completeness index, which measures the extent to which the item relies on the “other required 

skills” variable, θi. Finally, for historical reasons, the fusion model calls the skill suppression 

parameters *
jkr  instead of jkr . This gives the following likelihood for the fusion–model-

evidence–model: 
( )

(1 )*( 1 | , ) Logit( ) k

s j

jij i j i i jk
k

P Y c r απ θ −= = − ∏α π  

Note that iθ  enters into the equation using a Rasch-type IRT model. The role that would 

be played by discrimination parameters are taken by the *
jkr ’s. It is a mistake, however, to 

interpret the θI as meaning the same thing as in a conventional IRT. The θI in the fusion model is 

actually a residual skill and might be less confusing if it were given a different name. 

All that remains is to establish prior distributions for the evidence model parameters, 

. The prior distributions for * * *( , , : ( ))j j j jkc r k in S jπ π= *
jπ , jc /3, and *

jkr  are Beta( , )sπ πµ , c cBeta( , )sµ  

and Beta( , )r rsµ . The µ ’s and s ’s are hyper-parameters. The µ ’s come from a Unif(0.1, 0.9) and 

the s ’s come from a Unif(0.5, 10). 

Comparison of Models 

The general Bayesian psychometric framework describes a broad space of possible 

models. It includes not only the models explored above, but also more conventional models such 

as IRT (both unidimensional and multidimensional) and latent class models. Table 2 lists some 

Bayesian psychometric models in the Bayesian psychometric framework, although this paper 

only looks at the Bayesian network and fusion models. 
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Table 2 

Some Bayesian Psychometric Models in the Bayesian Psychometric Framework 

Model Proficiency     Evidence         Pros Cons 

IRT Single θ Single outcome Ranking  
participants 

Little diagnostic 
information 

MIRT M ultiple θ; 
Correlational 
structure 

S ingle outcome; 
Requires expert 
opinion 

Multiple  
reporting scales 

Expert opinion 
required to avoid 
nonidentifiability 

Latent 
class  

S ingle α; 
Multiple levels 

Single outcome  Classes can be 
matched to 
educational 
interventions 

No details beyond 
class membership 

Binary 
skills  

Multiple binary α Single outcome Tied to cognitive 
theory of domain 

Expert opinion 
required to avoid 
nonidentifiability 

Bayesian 
network 

M ultiple α; 
Requires expert 
opinion 

M ultiple outcomes; 
Requires expert 
opinion 

F lexible; 
Tied to cognitive 
heory of domain; t 

Fast computation 

Expert opinion 
required to avoid 
nonidentifiability 

Fusion M ultiple binary α; 

S ingle θ; 
Correlational 
structure, 
underlying 
multinormal  
with cut points 

Single (binary) 
utcome; o 

Expert opinion  
only on which 
proficiencies are 
tapped 

Good measure of 
importance of 
proficiencies 

Cut points can be 
difficult to 

etermine; d 
Expert opinion 
required to avoid 
nonidentifiability  
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The fusion model has a very nice structure for the evidence model. In particular, the r*
jk 

parameters have a natural interpretation related to the importance of Skill k in solving Item j; -

log(r*) is the weight of evidence that getting Item j right provides for Skill k (L. DiBello, 

personal communication, May 12, 2003). On the other hand, the proficiency model is rather 

weak, particularly in the unusual choice of prior for the covariance matrix. 

The Bayesian network model is very flexible, but it requires a fairly substantial input of 

expert opinion to build each model. Much of the flexibility of the Bayesian network is not 

explored in this paper. In particular, proficiency variables can have any number of levels, as can 

observable outcome variables of items (allowing for constructed response items). Actually, some 

of our work for Bayesian networks has gone further in that it uses multivariate outcomes for 

complex constructed response tasks (e.g,. simulator output) that are not easily handled by other 

systems (Almond et al., 2001). The theory to support these kinds of proficiency and outcome 

variables has not yet been worked out for the fusion model, so we have limited our comparison 

to a class of simplified Bayesian networks that are parallel with the fusion model. 

In general, any Bayesian psychometric model that has a multivariate proficiency model 

will require some input from experts to prevent nonidentifiability of the proficiency variables 

(which could always be relabeled). This must take the form of giving some guidance as to which 

items load which proficiency variables, thus making the effective definition of that variable. The 

Q-matrix is a natural expression of this loading and represents the minimum required 

information that must be elicited from experts to support a multidimensional model. Although 

we can detect some deviations from expert-supplied Q–matrix through data analysis, we still 

require that initial Q-matrix to bootstrap the process. 

Note that any time there are binary (or other discrete) attributes in the proficiency model, 

it will produce latent classes. These latent classes, however, more closely resemble the ones 

induced by the binary skills model of Haertel and Wiley (1993). The five skills in the mixed 

number subtraction model produce 32 latent classes. Including the prerequisite relationship 

between Skill 3 and Skill 4 (the Bayesian network model includes this but the fusion model does 

not) reduces the number of latent classes to 24. 

However, not all of these 24 classes can be distinguished from the data. For example, all 

tasks use Skill 1. Therefore, the 12 latent classes that lack Skill 1 are indistinguishable on the 

basis of the data. Table 3 groups the latent classes into equivalence classes that can be 
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distinguished on the basis of the data. In this 15-item assessment with only six evidence models, 

we can only distinguish nine different equivalence classes of proficiency variable states. 

Table 3 

Equivalence Classes and Evidence Models 

Equivalence  Evidence model Class 
class 1 2 3 4 5 6 description  
1                 No Skill 1 
2 x                Skill 1 only 
3 x  x              Skill 1 & 3 
4 x  x x             Skill 1, 3, & 4 
5 x  x x x            Skill 1, 3, 4, & 5 
6 x x               Skill 1 & 2 
7 x x x              Skill 1, 2, & 3 
8 x x x x  x           Skill 1, 2, 3, & 4 
9 x x x x x x           All skills 

Note. x represents evidence models in which a student in an equivalence class is  
expected to make a correct response. In other words, for example, a student in  
Equivalent Class 8 who has Skills 1, 2, 3, and 4 is expected to make a correct  
response for the tasks in Evidence Models 1, 2, 3, 4, and 6. 

Empirical Comparisons 

Model Fitting 

Procedures 

The analyses for both models had the same specifications whenever possible. We used 

BUGS (Spiegelhalter, Thomas, & Best, 2000; Spiegelhalter, Thomas, Best, & Gilks, 1995)and 

the original Q-matrix as shown in Table 1 in the analyses for the Bayesian network. The starting 

value for the parameters were from the posterior approximations in an early run (Mislevy et al., 

1999). The final model parameter estimates resulted from 2,000 iterations following 2,000 burn-

in iterations (Yan et al., 2003). 

We used Arpeggio (Hartz et al., 2002) for the fusion model analyses starting with the 

original Q-matrix as shown in Table 1 and following the guidelines described in Hartz et al. (2002). 

We also used mild prior distributions for the hyper-parameters in the model. The results were based 

on a sample of 2,000 iterations after 2,000 burn-in iterations. 
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To increase the estimation accuracy for the fusion parameters that sufficiently influence 

the data as described in Skills Diagnosis: Theory and Practice (Hartz et al., 2002), the Arpeggio 

estimation algorithm was expanded to sequentially drop some model parameters that appeared to 

be poorly estimated or statistically insignificant based on the 95% Bayesian confidence intervals 

(CI) of the posterior distribution estimates. 

Our first results with the original Q-matrix and all the item and examinee parameters 

showed us that many r*
jk have the upper 95% CI > 0.95; 8 of the 15 ci parameters’ upper 95% CI 

> 2.0; and the proportion of mastery for Skill k, , for Skill 2 and Skill 5 has quite a big 95% CI 

width. For Skill 2, only two items measure the skill, which is less than the Arpeggio requirement 

of at least three items in order to have a good estimate. As a result, we dropped Skill 2 due to its 

lack of information in the data set. We also dropped the eight c

kP

i parameters that have big upper 

95% CI in the model. 

The second run resulted in another ci parameter with upper 95% CI > 2.0, so we dropped 

that. The subsequent Arpeggio results turned out to have more ci parameters that have big upper 

95% CI, so we proceeded to drop them one after another, and eventually we ended up dropping 

all the ci parameters. We then looked at the estimates for the other parameters. There were many 

r*
jk that were still very big for some items ( for Skill 3 on Item 5 was 0.975, which was the 

biggest), so we dropped the items. Then we found  for Skill 3 on Item 9 was 0.975 and  

for Skill 3 on Item 11 was 0.955, so we dropped  and  for Skill 3 on Items 9 and 11. As a 

result, we only dropped one parameter per item each time. 

*
53r

*
93r

*
93

*
11,3r

r *
11,3r

After these item parameters were dropped, we found there was no r*
jk > 0.95, although 

for Skill 1 on Item 5 was 0.915, *
51r *

10,3r  for Skill 3 on Item 10 was 0.905, and many had 95% CI 

width > 0.6 or 0.7 (especially for Skill 4). Now, in this model, Skill 3 and Skill 4 were completely 

confounded, so both analyses with either Skill 3 or Skill 4 were the same. The final fusion model 

contained Skill 1, Skill 4, and Skill 5. 

Discussion 

Before we begin to examine the parameters, we can already see some interesting 

differences between the two approaches. In some ways, dropping the iθ  parameter from the 

fusion model was fortuitous, as it makes both models purely discrete and hence easier to 
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compare. In particular, we can find functions of the fusion model parameters that should be 

equivalent to the Bayesian network parameters to compare them more directly. 

With iθ  out of the picture, the biggest difference between the fusion model and the 

Bayesian network model is one of approach. The Bayesian network model is built with a fully 

Bayesian approach using relatively strong priors. The fusion model takes a more data-driven 

Bayesian approach using fairly weak priors. Because several skills had very few items that 

tapped it, there is a fair amount of sensitivity to the choice of prior. 

In particular, the test contained only two items that tapped Skill 2. The Bayesian network 

model can still make inferences about that skill based mainly on the prior judgments about 

relationships with other skills. The situation for Skill 3 is even stronger. Even though only three 

items tapped Skill 3 without also using Skill 4, the Bayesian network model can still provide 

fairly strong information about Skill 3 because of the modeled prerequisite connection between 

Skill 3 and Skill 4. 

Estimation Results and Comparisons 

The distribution of the MCMC estimates for 1λ , the proportion of students who have Skill 

1 is nicely concentrated and centered at 0.81 with a small posterior variance. 20λ is the probability 

of having Skill 2 when Skill 1 is not present. This is the prior, and we learned nothing from the 

data. Because of the design of the assessment, Skill 2 is present when Skill 1 is present, too. So, 

21λ  is the probability of having Skill 2 when Skill 1 is present; it has a tighter distribution centered 

nicely at 0.92. 50λ , 51λ , and 52λ  are the probabilities of having Skill 5 when having neither Skill 1 

nor Skill 2, having one of them, and having both of them, respectively. They are centered at prior, 

0.49, and 0.74, with 52λ  having smallest posterior variance based on the data. 

In the final fusion model, the ci parameters are not influential parameters and are all 

dropped, so we basically do not have the iθ  effects any more. Table 4 is the final Q-matrix for 

the fusion model. Skill 1 is an easy skill; ’s are estimated well for the easy items, but they are 

not estimated well for the hard items, with their 95% CI width > 0.4. Skill 4 is estimated well for 

the hard items except for Item 3. Basically, the fusion model recognizes the easy skill, such as 

Skill 1, and the hard skill, such as Skill 4 (or Skill 3). Skill 5 is not estimated well in this model, 

with 95% CI width > 0.4 on all three items, which means there is not enough information for this 

*r
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parameter. The estimated  has its 95% CI width = 0.2 at its borderline; it is only measured on 

three items with the small data set (325 examinees), so there may not be much information for 

Skill 5, either. Also, the lag 200 autocorrelation for is 0.487, which is very high, indicating the 

requirement for more iterations to have good estimates for this parameter. Although the  

estimates are noisy, we kept Skill 5 in the model so that we retained at least three skills. For this 

assessment, Skill 3 and Skill 4 were not distinguishable. If we need to distinguish these two 

skills, we will need to add more items that use Skill 3 but not Skill 4 (EM 3). 

5P

5P

5P

Table 4 

Final Q-matrix for Fusion Model Skill Requirements for Fraction Items 

  Skills required  
Item Text 1 2 3 4 5 EM 
  2 6

7 − 4
7 =  x     1 

  4 3
4 − 3

4 =
11

 x     1 
  8 8 − 1

8 =
4

 x     2 
  9 3 5 − 3 2

5 =
5

 x     3 
11 4 7 −1 4

7 =
7

 x     3 
  5 3 8 − 2 =

1
 x     3 

  1 3 2 − 2 3
2 =

1
 x   x  4 

  7 4 3 − 2 4
3 =

3
 x   x  4 

12 7 5 − 4
5 =

1
 x   x  4 

15 4 3 − 1 5
3 =

1
 x   x  4 

13 4 10 − 2 8
10 =

1
 x   x  4 

10 2 − 3 =
1

 x   x x 5 
  3 3 − 2 5 =

− 4
 x   x x 5 

14 7 1 3 =
4

 x   x x 5 
  6 4 12 − 2 7

12 =  x   x  6 
 

The final fusion model is simpler than the Bayesian network model, because the final 

fusion model has only Skill 1, Skill 4, and Skill 5, and it is a model based on the data set without 

considering the information from the assessment designers. Our fusion model basically had two 

main skills: Skill 1 for easy items and Skill 4 for hard items. By dividing the 15 items into only 

easy and hard groups, we actually lost some detailed information from the assessment where 

examinees mastered part of the easy items dealing with “Basic fraction subtract” (Skill 1), but 

had not yet mastered “Simplifying/reducing fraction or mixed number” (Skill 2). Using the 

Bayesian network, we can still make inferences about Skill 2, but they are based mainly on our 
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prior beliefs about its relationship to the other skills. This is a similar situation for Skill 5, 

“Convert a whole number to a fraction.” 

We now look at the proportion of masters for each of the five skills. Table 5 lists the 

posterior mean for the proportion of masters for each of the five skills fit with the Bayesian 

network model and each of the three skills fit with the fusion model. For comparison purposes, it 

also lists the prior mean proportion of masters for the Bayesian network model.  

Table 5 

Estimated Proportions of Skill Masters 

Skill Bayes net priors Bayes net Fusion model 
1 0.870 0.803 0.711 
2 0.774 0.764 ------ 
3 0.815 0.824 ------ 
4 0.517 0.392 0.369 
5 0.739 0.600 0.354 

 

First, Table 5 shows us the data were able to pull the Bayesian network posterior away 

from the prior to a fairly large extent for Skills 1, 4, and 5 (the ones retained in the fusion 

model). For Skills 2 and 3, which the fusion model drops, the Bayesian network model does not 

move far from its prior at all. 

Note that Skill 1 does not mean the same thing in the fusion and Bayesian network 

models. Because Skills 2 and 3 were dropped in the fusion model, the new Skill 1' is the only one 

required for Evidence Models 1, 2, and 3. Skill 1' incorporates some elements of Skill 2 and Skill 

3 that are harder to acquire and hence rare in the population. This explains the observed 

difference in Table 5. 

The difference in the population proportions for Skill 5 seems quite large. This is an 

artifact of the design of the test. Note that Skill 5 was only tested with Evidence Model 5, which 

also includes Skill 4. Thus, it is impossible to make inferences purely from the data on the 

presence of Skill 5 for persons who lack Skill 4. The Bayesian network model will assign the 

presence of Skill 5 to those who lack Skill 4, with the prior probability 5 4( 1 | 0P )α α= =  

approximately equal to 0.614. (This can be calculated from the mean of the prior distributions for 

λ�  in Bayesian network software.) The observed proportion of masters for Skill 5 will be a 
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mixture of this probability for the 60% of the population who have not mastered Skill 4 and 

5 4( 1 | 1P )α α= = estimated from the data for the 40% of the population who have mastered Skill 4. 

P α

* *

1

K

i ik
k

rπ
=

∏ 0iπ

What happens in the fusion model is more complex because it depends on the correlation 

between Skill 4 and Skill 5, which is difficult to estimate because of the design of the test. 

However, the effect is likely to be the assumption that 5 4( 1 | 0P )α α= =  is assumed to be roughly 

equal to 5 4( 1 |α= = . Indeed because of the design of the assessment, we observe that the 

estimates of the Skill 5 parameters are problematic and candidates for removal. Item and 

examinee statistics are based on the Bayesian network and final fusion model results. Table 6 

contains the estimated item parameters for the Bayesian network and final fusion model. 

1)

Table 6 

Estimated Item Parameters From 3LC and Fusion Model 

Bayes net  Fusion model  
Item 

 
Observed 
P-value 

 0π  1π  2π   * *

1

K

k
k

rπ
=

∏
*π  

  1 0.369  0.042 0.138 0.889  0.024 0.844 
  2 0.794  0.193 0.224 0.929  0.450 0.923 
  3 0.326  0.044 0.208 0.871  0.023 0.807 
  4 0.705  0.324 0.223 0.787  0.419 0.812 
  5 0.692  0.462 0.292 0.763  0.555 0.730 
  6 0.308  0.038 0.071 0.864  0.008 0.772 
  7 0.366  0.069 0.106 0.903  0.035 0.854 
  8 0.711  0.114 0.227 0.908  0.302 0.869 
  9 0.754  0.127 0.370 0.938  0.320 0.922 
10 0.382  0.040 0.289 0.884  0.028 0.839 
11 0.742  0.142 0.327 0.926  0.324 0.904 
12 0.339  0.054 0.111 0.843  0.035 0.787 
13 0.406  0.047 0.243 0.838  0.064 0.790 
14 0.259  0.038 0.076 0.929  0.006 0.842 
15 0.308  0.042 0.059 0.843  0.011 0.785 

 

Because we dropped the iθ  from the fusion model, we find for each Item i that *
iπ  in the 

fusion model and 2iπ in Bayesian network model have the same interpretation. These are both the 

probability of solving the item given that the student has mastered the requisite skills. Similarly, 

 and have similar interpretations: They are both the probability of solving the item 
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given that the student has not mastered any of the requisite skills. For example, 10π is the 

probability of solving Item 1 given the student has not mastered any of the skills required for 

Item 1.  is the product of , the probability of solving Item 1 given the student has not 

mastered any of the k skills. Thus the probability of solving Item 1 is the product of solving Item 

1 given the student has mastered the skills 

*
1

1

K

k
k

r
=

∏ *
1kr

*
1π  and *

1
1

K

k
k

r
=

∏ . Table 6 offers a comparison. 

2,2π

*
ik

k

π π

* *

1

K

i ik
k

r
=

∏ π

Even though the interpretation of the parameters is similar, we do not expect the numbers 

to be the same because the population proportion of the skills (and even their interpretation in the 

case of Skill 1) is different in the two models. For example, the value of 
*
2π  is approximately the 

same as for Item 2 (from Evidence Model 1); however, the value of 2,0π is quite a bit smaller 

than the value of . This is due to the difference in the population proportion for Skill 1. In 

both cases, the predicted proportion correct is 78%. 

* *
2 2

1

K

k
k

rπ
=

∏

The largest discrepancies between *

1

K

i r
=

∏  and ,0i  comes for Items 2, 4, 5, 8, 9, and 11. 

Note that these are all from Evidence Models 1, 2, or 3. By dropping Skill 2 and Skill 3, the 

fusion model collapses those into a single evidence model. The 3LC model on the other hand, 

distinguishes between students who have mastered Skill 1 but not Skill 2 (or 3) and between 

those who have not yet mastered Skill 1. Thus π  often falls between ,0iπ and ,1i . In some 

cases it is higher than ,1iπ ; this is probably due to the same proportion-balancing problem seen 

before. 

For the other evidence models, the fusion model and the Bayesian network are in fairly 

good agreement. In this case, both have enough parameters to model the data better. 

Diagnostic Results and Comparisons  

For the total 325 examinees, we first applied classification rate of 0.5 for their Skill 1, 

Skill 4, and Skill 5 estimation results from both the fusion model results and the Bayesian 

network. That is, for those examinees whose posterior probability for Skill k is greater or equal to 

0.5, we classify them as “Having Skill k.” Table 7 lists the diagnostic results. 
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There are fairly good agreements for the examinee skills classification under the two 

models, especially for Skill 4. Basically all the examinees are classified as either “Having Skill 

4” or “Not having Skill 4” under the two models, except for six examinees. For Skill 1, 231 

examinees are classified as “Having Skill 1” under both models, and 62 examinees are classified 

as “Not having Skill 1” under both models. There is no misclassification where the fusion model 

classifies examinees as “Having Skill 1” while the Bayesian network model classifies them as 

“Not having Skill 1,” but there are 32 examinees whom the fusion model classifies as “Not 

having Skill 1” while the Bayesian network model classifies them as “Having Skill 1.” For Skill 

5 under both models, 108 and 113 examinees are classified as “Not having Skill 5” and “Having 

Skill 5,” respectively, with 102 examinees in disagreement; they are classified as “Not having 

Skill 5” under the fusion model while they are classified as “Having Skill 5” under the Bayesian 

network model. 

Table 7 

Fusion Model and Bayesian Network Classifications at 0.5 level 

Fusion model Bayes net 
 No skill Have skill 

 Skill 1 
No skill 62    32 
Have skill    0 231 

 
Skill 4 

No skill 205     0 
Have skill     6 114 

 
Skill 5 

No skill 108 102 
Have skill     2 113 

 

We then applied a classification rate of (0.4, 0.6) for the Skill 1, Skill 4, and Skill 5 

estimation results from both models. For those examinees if their posterior probabilities for Skill 

k was less than or equal to 0.4, we classified them as “Not having Skill k”, and if their posterior 
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probabilities for Skill k was greater than or equal to 0.6, we classified them as “Having Skill k”. 

Table 8 lists the classification results for this case. 

We then applied a classification rate of (0.4, 0.6) for the Skill 1, Skill 4, and Skill 5 

estimation results from both models. For those examinees if their posterior probabilities for Skill 

k was less than or equal to 0.4, we classified them as “Not having Skill k”, and if their posterior 

probabilities for Skill k was greater than or equal to 0.6, we classified them as “Having Skill k”. 

Table 8 lists the classification results for this case. 

Table 8 

Fusion Model and Bayesian Network Classifications at (0.4, 0.6) Level 

Fusion model Bayes net 

 No skill Unknown Have skill 

 
Skill 1 

No skill 60 4   24 
Unknown   0 0     6 
Have skill   0 0 231 

 
Skill 4 

No skill 202 0 0 
Unknown     4 1     1 
Have skill     3 3 111 

 
Skill 5 

No skill 98 16   81 
Unknown   3   3   19 
Have skill   0   0 105 

 

There are, again, fairly good agreements for the examinee skills classification under the 

two models, especially for Skill 4. Three examinees in each of the “Not having Skill 4” and 

“Having Skill 4” categories under both models were moved to “Unknown” or unclassified 

categories because their posterior probabilities are around 0.5 and therefore are not classified. 

There are still 24 examinees in the Skill 1 classification disagreement and 81 examinees in the 

Skill 5 classification disagreement from the two models.  

27 



Table 9 lists typical individuals from the classification disagreement groups. The total 

number of correct responses from the Skill 1 classification disagreement group of examinees is 

between three and four. Examinees 249 and 256 both have typical response patterns from this 

group. Examinee 249 had four correct responses for Items 2, 5, 8, and 11 and was missing Item 4 

and 9 from Evidence Models 1, 2, and 3, which is a strong indication of having Skills 1 and 3, 

but not Skills 4 and 5. Examinee 256 is a similar case but had Item 9 correct instead of Item 11 

correct from Evidence Model 3. 

For the Skill 5 classification, 98 examinees were classified as “Not having Skill 5” under 

both models, and 105 examinees were classified as “Having Skill 5” under both models. There 

were still 81 examinees in disagreement, and the total number of correct responses for this group 

of examinees ranged from 3 to 11 out of 15 items. Examinee 195 and Examinee 197 had typical 

response patterns in this group. They had correct responses for all of the items in Evidence 

Models 1, 2, and 3, which indicates that they are very likely to have Skills 1, 2, and 3. In the 

fusion model, we had to drop Skill 2 and Skill 3 during the model adjustment because only two 

items tap Skill 2, and Skill 3 was confounded with Skill 4. The fusion model could not estimate 

Skill 3 separately due to not having enough of the information that the model requires from the 

data, so Skill 4 is a result of a combination of Skill 3 and Skill 4. However, the Bayesian network 

model can use the relationship among the skills to estimate Skills 3, 4, and 5. 

Table 9 

Selected Examinee Responses 

Item 
 EM 1 EM 2 EM 3 EM 4 EM 5 EM 6  
Examinee 2 4 8 5 9 11 1 7 12 13 15 3 10 14 6 Total
249 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 4 
256 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 4 
195 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 7 
197 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 6 
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Conclusion 

In summary, the Bayesian network approach is a strong Bayesian approach using 

informative priors. The fusion model, in contrast, is a data-driven Bayesian approach using weak 

(diffuse, but not noninformative) priors. The Bayesian network model was able to retain more of 

the skills identified by the cognitive experts, but only by relying on expert opinion. One’s 

conclusions about which approach is better are likely to rest mostly on one’s opinion about the 

strong priors; there is simply not enough data in a single example to shift that prior one way or 

another. 

However, the structural assumptions about the relationships among the items and 

parameters are likely much stronger than the input priors for the parameters. In particular, the Q-

matrix is a critical piece insuring that what is claimed to be measured by the skills is actually 

measured by those skills. Even though the fusion-model fitting procedures modifies the Q-matrix 

to remove unidentified skills and unneeded attributes, it still relies very heavily on the initial Q-

matrix provided by the experts. 

The Q-matrix plays a role equivalent to the design matrix in a more conventional 

experiment. It determines which parameters will be estimable from data and which will simply 

reproduce the prior information. Difficulties like the one with Skill 5 derive directly from the 

specifications for this test as seen in the Q-matrix. In this particular problem, the short test length 

produces a number of problems for estimation. Most of those can be seen by inspecting the Q-

matrix. The proper fix for many of these problems would be to increase the length of the test to 

try to get new problem types that tap the skills in different combinations. DiBello, Crone, 

Monfils, Narcowich, and Roussos (2002) call this “total and partial blocking.” 

One useful result from our comparison of the two models was a graphic illustration of 

which parts of the Bayesian network 3LC model were sensitive to the prior information. By 

running two models, one with a strong prior and one with a weak, we discovered which parts of 

the model changed and which stayed steady, helping us to identify which parts of the model were 

not well-validated by the data. This comparison might be formalized into interesting kinds of 

diagnostic procedures. 

From a purely theoretical standpoint, we prefer the Bayesian network form of the 

proficiency model to the fusion model form. The multivariate normal model underlying the 

fusion proficiency model does not allow us to model the prerequisite dependency. To do this, we 
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would need to explore the prior distribution for ∑  used in the fusion model; a covariance 

selection model (modeling ) might allow for richer kinds of expert opinion to be incorporated 

into the model (Whittaker, 1990). On the other hand, the Bayesian network models can be 

expensive to elicit. We have begun looking at applying the same Thurstonian cut-score trick that 

we used with the fusion model to reduce the number of parameters we must elicit from a 

Bayesian network model. 

1−∑

For the evidence model, we prefer the fusion model parameterization. The parameters of 

the fusion model have a natural interpretation in terms of the noisy-and model. In particular, the 

parameter r  has a direct interpretation in terms of the importance of Skill k for solving Item j. 

Furthermore, thinking about the design of the test in terms of the Q-matrix has a powerful 

analytical value. 

*
ik

Going forward, we would like to explore models that are hybrids of the two approaches. 

Mixing the Bayesian network proficiency model with the fusion evidence model would produce 

a very attractive class of models. It allows the use of additional expert opinion in the proficiency 

model along with the fusion model statistics for item/skill correspondence. Furthermore, 

approximating the iθ  parameter with a discrete latent variable having five or seven levels would 

give a fairly good approximation of the fusion model, but it would still support the fast 

calculation algorithms of Bayesian networks (Pearl, 1988; Lauritzen & Speigelhalter, 1988). It 

would give us a good starting place for exploring the universe of possible models encompassed 

by the Bayesian psychometric framework. 
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Notes 
1Their analyses indicated their students tended to use one method consistently, even though an 

adult might use whichever strategy appears easier for a given item. 
2 A certain type of MCMC that provides numerical approximation of posterior probability 

parameters in Bayesian estimation problems (Gelman, Carlin, Stern, & Rubin, 1995; Gilks, 

Richardson, & Spiegelhalter, 1996). 
3 A generalization of Beta distribution and a natural conjugate prior for categorical distributions. 

If there are K categories, then the Dirichlet distribution has K parameters, kα , k = 1, .. K, 

k
k

α∑ is interpreted as a pseudo sample size, and each kα / j
j

α∑ is the prior mean of the 

probability for category k (Gelman, Carlin, Stern, & Rubin, 1995). 
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